# ROBUSTNESS OF THE ONE-SAMPLE WILCOXON SIGNED-RANK TEST WHEN INDEPENDENCE IS NOT ASSUMED* 

by Eliseo M. Lademora, Jr.**

## 1. THE WILCOXON SIGNED-RANK TEST

### 1.1 THE ONE-SAMPLE LOCATION PROBLEM

The location parameter is a number obtained from a probability distribution which indicates where the distribution is "centered" or "located". Let this number be denoted by $\hat{0}$. The one-sample location problem is the problem of testing the hypothesis,

$$
\mathrm{H}_{0}: \theta=\theta_{0}
$$

against either the one sided alternative

$$
H_{1}: \hat{\theta}<\theta_{0}\left(\text { or } \theta>\theta_{0}\right)
$$

or the two-sided alternative

$$
\mathrm{H}_{1}: \theta \neq \hat{\mathrm{O}} 0 .
$$

This will be solved without making any assumptions about the specific form or parameter values of the underlying population distribution (which is the case for distribution-free statistical procedures, one of which is the test under consideration). Instead the following basic assumptions are set down:

1. The set ( $\mathrm{X}_{1} \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ ) constitute the sample drawn; the random variables are independent and have the same distribution.
2. The population distribution is continuous.
3. The population distribution is symmetric.
[^0]Under the well-defined assumed distribution of the classical theory, the expected value is the location parameter. In the more general class of distributions satisfying the assumptions given above, the expected value when existing is of little use because generally its sampling distribution depends on the (unknown) population distribution. However, for any distribution, the median $m$ always exists as that number for which

$$
\operatorname{Pr}\left(X>_{m}\right)=0.50
$$

Hence, in this instance, the median $m$ is considered as the location parameter.

### 1.2 THE TEST STATISTIC

A random sample of $n$ observations is drawn from a continuous and symmetric population with median m. Under $H_{0}, x_{1}$ is symmetric about $\mathrm{m}_{0}$; hence the differences

$$
D_{1}=X_{1}-m_{0} \quad i=1,2, \ldots, n
$$

are symmetrically distributed about 0 . This means that positive and negative differences of equal absolute magnitude have the same probability of occurence; i.e. if c is any positive number then,

$$
\operatorname{Pr}\left(D_{1} \geq-c\right)=\operatorname{Pr}\left(D_{1} \geq c\right)=1-\operatorname{Pr}\left(D_{1}<c\right) .
$$

If no reference to a specific random variable $X_{1}$ is made, the deviation $\mathrm{X}-\mathrm{m}_{\mathrm{o}}$ from the hypothesized median will be denoted by D.

It was previously mentioned that if $\mathrm{H}_{0}$ is true the probability distribution of D is symmetric about 0 . Under $\mathrm{H}_{1}$ this is not the case. Nevertheless, whatever is the value of the population median m , the following relationship concerning the cumulative distribution function of D will hold true,

$$
\underset{|D|}{F(u)}=\underset{D}{F(u)}-\underset{D}{F(u)} \text { for every } u \geq 0 .
$$

The absolute differences $\left|D_{1}\right|,\left|D_{2}\right|, \ldots,\left|D_{n}\right|$ are ordered from smallest to largest by assigning them ranks $1,2, \ldots, \mathrm{n}$ at the same time keeping track of the signs of the differences $D_{1 .}$. After this is done, there will be a set of $n$ ranks and a corresponding set of $n$ plus and minus signs. The rank i is
associated with a plus or minus sign according to the sign of $D_{j}=X_{j}-m_{0}$ where the rank of $\left|D_{j}\right|$ (denoted by $r\left(\left|D_{j}\right|\right)$ ) is $i$.

Let a sign indicator function be defined as follows,

$$
\mathrm{Z}_{\mathrm{ci} 1}=\begin{array}{ll}
(1 & \text { if } \mathrm{D}_{\mathrm{j}}>0 \text { and } \mathrm{r}\left(\left|\mathrm{D}_{\mathrm{j}}\right|\right)=\mathrm{i} \\
(0 & \text { if } \mathrm{D}_{\mathrm{j}} \leq 0 \text { and } \mathrm{r}\left(\left|\mathrm{D}_{\mathrm{j}}\right|\right)=\mathrm{i}
\end{array}
$$

Then the Wilcoxon Signed-Rank Test (hereafter written as WSRT) statistic can be defined as

$$
\begin{equation*}
\mathrm{T}=\sum_{\mathrm{i}=\mathrm{l}}^{\mathrm{n}} \mathrm{i} \mathbf{Z}_{\mathrm{i}}, \tag{1}
\end{equation*}
$$

It has been seen from equation (1) that T is the sum of the ranks of the absolute values $\left|D_{j}\right|$ corresponding to differences $\mathrm{X}_{\mathrm{j}}-\mathrm{m}_{0}>0$. The random variables $\mathrm{Z}_{(\mathrm{i})}$ are independent Bernouilli variables with parameter $p_{1}$ which are not identical under $H_{1}$.

Let $\mid D_{\mid c 1}$, denote the ith order statistic among $\left|D_{1}\right|,\left|D_{2}\right|$, $\ldots\left|D_{n}\right|$. The parameter $p_{i}$ is then defined as,

$$
\begin{align*}
\mathrm{p}_{\mathrm{i}} & =\operatorname{Pr}\left(\mathrm{Z}_{\mathrm{i},}=1\right) \\
& =\operatorname{Pr}(|\mathrm{D}|)_{\mathrm{i}}, \text { is such that } \mathrm{D}>0 . \tag{2}
\end{align*}
$$

Utilizing the expression for the distribution of the ith order statistic, the distribution of $|\mathrm{D}|_{\mathrm{c}}$, can be written as

$$
\underset{|D|(i)}{f(u)}=[n!/(i-1)!(n-i)!] \underset{|D|}{[F(u)}]^{i=1}[1-F(u)]_{|D|}^{n-1} \underset{D}{f}(u)
$$

This marginal density can be used to derive an expression for $p_{i}$ as defined in equation (2). In its final form, this expression is as follows,

$$
p_{i}=n(\underset{i=1}{n-1}) \int_{0}^{\infty}[F(u)-F(-u)]_{D}^{l=1}[1-F(u)+F(-u)]_{D}^{n-1} f(u) d u .
$$

If $H_{o}$ is true $P_{i}$ is evaluated when $X$ is symmetric about $m_{0}$, i.e. when $D$ is symmetric about 0 . Under this condition,

$$
\begin{equation*}
F(-u)=1-F(u) . \tag{4}
\end{equation*}
$$

D D

Substituting (4) in (3),

$$
\begin{equation*}
p_{i}=n\left({ }^{n=1}\right) \int_{i=1}^{\infty}[2 F(u)-1]^{i-1} \quad[2-2 F(u)]^{n-1} f(u) d u \tag{5}
\end{equation*}
$$

Applying the transformation $v=2 F(u)-1$, (5) becomes,

$$
p_{i}=n / 2\left(\begin{array}{l}
n-1  \tag{6}\\
i=1
\end{array} \int_{0}^{1} v^{i-1}(l-v)^{n=i} d v\right.
$$

The integral in equation (6) is just the beta function,

$$
\begin{align*}
B(i, n-i+1) & =(i-1)!(n-i+1-1)!/(i+n-i+1-1)! \\
& =(i-1)!(n-i)!/ n! \tag{7}
\end{align*}
$$

From (6) and (7),

$$
\begin{aligned}
\mathrm{p}_{\mathrm{i}} & =\mathrm{n} / 2\binom{\mathrm{n}=1}{\mathrm{i}=1}(\mathrm{i}-1)!(\mathrm{n}-\mathrm{i})!/ \mathrm{n}! \\
& =1 / 2 .
\end{aligned}
$$

Therefore under $\mathrm{H}_{0}$,

$$
\begin{equation*}
P_{i}=\operatorname{Pr}\left(Z_{(i)}=1\right)=1 / 2, \quad i=1,2, \ldots, n \tag{8}
\end{equation*}
$$

This means that if the null hypothesis is true, the event $X_{j}-m_{0}$ $>0$ and $X_{j}-m_{0}<0$ where $\left|X_{j}-m_{0}\right|=|D|_{c,}$ arc equally likely. This fact is the basis for formulating the proobbility distribution of $T$ under $\mathrm{H}_{0}$.

From equation (1) it can be seen that $\mathbf{T}$ is completely determined by the sign indicators $\mathrm{Z}_{\mathrm{i} i}$. This if the statistic $T$ has a given value $t$ (where $t=0,1, \ldots, n(n+1) / 2$ ) then it is completely defined by the set of n-tuples,
such that

$$
\operatorname{Pr}(T=\mathrm{t})=\operatorname{Pr}(\mathrm{A})
$$

Let $n(t)$ be the number of sample points ( $n$-tuples) in A(i.e. the number of elements in the set $A$ such that $T=t$ ). Suppose that for one of these sample points, exactly $\mathbf{k}$ specified ranks $r_{1}, r_{2}, \ldots, r_{k}$ correspond to positive signs of $X-m_{0}$. The probability of this particular sample point would then be equal to,


Since there are $n(t)$ sample points in A,

$$
\begin{aligned}
& \mathrm{n} \text { ( } \mathrm{t} \text { ) } \mathrm{k}
\end{aligned}
$$

$$
\begin{align*}
& =\operatorname{Pr}(\mathrm{T}=\mathrm{t}) \text {. } \tag{9}
\end{align*}
$$

For example, in a random sample of size $n$,

$$
\mathrm{T}=3 \text { if and only if } \mathrm{A}=\{(1,1,0, \ldots, 0),(0,0,1, \ldots .0)\}
$$

Therefore from (9),

$$
\operatorname{Pr}(T=3)=\operatorname{Pr}(1,1,0, \ldots, 0)+\operatorname{Pr}(0,0,1,0, \ldots, 0)
$$

$$
=p_{1} p_{2} \prod_{i=3}^{n}\left(1-p_{i}\right)+\left(1-p_{1}\right)\left(1-p_{2}\right) p_{3} \prod_{i=4}^{n}\left(1-p_{i}\right),
$$

where, if $H_{o}$ is not true, the value of $p_{i}$ can be obtained from equation (3) provided the population distribution function is known.

Equation (9) gives the probability distribution of T for any value of the median $m$. If $m=m_{0}$,

$$
\begin{aligned}
\prod_{i=1}^{k} \mathrm{p}_{\mathrm{i}}^{\mathrm{p}} \prod_{j \neq r_{i}}\left(1-p_{j}\right) & =\frac{(1 / 2.1 / 2 \ldots 1 / 2)}{\mathrm{k} \text { times }} \frac{(1 / 2.1 / 2 \ldots 1 / 2)}{n-k} \mathrm{~m}_{\text {times }}^{\left.(1 /)^{\mathrm{k}}\right)} \\
& =\left(1 / 2^{n-k}\right) \\
& =1 / 2^{\mathrm{n}} .
\end{aligned}
$$

Hence equation (9) becomes,

$$
\begin{align*}
\operatorname{Pr}(\mathrm{T}=\mathrm{t})_{H_{o}} & =\frac{1 / 2^{\mathrm{n}}+1 / 2^{n}+\ldots+1 / 2^{n}}{n(\mathrm{t})} \\
& =\mathrm{n}(\mathrm{t}) / 2^{\mathrm{n}} \tag{10}
\end{align*}
$$

Equation (10) gives the distribution of $T$ under $H_{0}$. Its mean and variance are evaluated to be,

$$
\begin{align*}
& \text { (11) } \\
& E(T)_{H_{0}}=\sum_{i=1}^{n} i E\left(Z_{(i)}\right)_{H_{0}}=\sum_{i=1}^{n} i(1 / 2)=1 / 2 \sum_{i=1}^{n} i \\
& =n(n+1) / 4 ; \\
& \operatorname{Var}(T)_{H_{0}}=\sum_{i=1}^{n} \mathrm{i}^{2} \operatorname{Var}\left(\mathrm{Z}_{(\mathrm{i})}\right) \underset{H_{0}}{ }=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{i}^{2}(1 / 2) \quad(1-1 / 2) \\
& =1 / 4 \sum_{\mathrm{\Sigma}=1}^{\mathrm{n}} \mathrm{i}^{2} \\
& \mathrm{i}=1 \\
& =\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1) / 24 \tag{12}
\end{align*}
$$

It is easy to generate the distribution of $T$ under $H_{0}$ for a given sample size $n$. The extreme values of $T$ are $0 n(n+1) / 2$. For each vector ( $\mathrm{Z}_{\mathrm{c} 11}, \mathrm{Z}_{(2,2}, \ldots, \mathrm{Z}_{(\mathrm{n})}$ ) associated with a given value of T , the assignment of signs has a conjugate assignment. which results when the plus and minus signs are interchanged. The value of T for this conjugate assignment is,

$$
\begin{align*}
t_{c o n j} & =\sum_{i=1}^{n} i\left(1-Z_{(i)}\right)=n(n+1) / 2-\sum_{i=1}^{n} i Z_{(i)} \\
& =n(n+1) / 2-t . \tag{1}
\end{align*}
$$

Obviously likewise,

$$
\begin{equation*}
\operatorname{Pr}(T=t)=\operatorname{Pr}\left(T=t_{\text {con }}\right) \tag{14}
\end{equation*}
$$

From (13) and (14) it can be shown that the distribution of $T$ under $H_{o}$ is symmetric about its mean. A condition for symmetry about the mean for a discrete random variable X is that,

$$
\operatorname{Pr}(X=x)=\operatorname{Pr}(X=2 E(X)-x) \text { for all } x>E(X)
$$

This is satisfied by $T$ since for all $t>n(n+1) / 4$,

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{T}=2 \mathrm{n}(\mathrm{n}+1) / 4-\mathrm{t}) & =\operatorname{Pr}(\mathrm{T}=\mathrm{n}(\mathrm{n}+1 / 2-\mathrm{t}) \\
& =\operatorname{Pr}\left(\mathrm{T}=\mathrm{t}_{\text {conj }}\right) \\
& =\operatorname{Pr}(\mathrm{T}=\mathrm{t}) .
\end{aligned}
$$

Because of this symmetry property, only one-half of the distribution under $H_{o}$ need be determined. The example below illustrates this.

In a random sample of size $\mathrm{n}=4, \mathrm{~T}$ can assume values which vary from 0 to $4(5) / 2$. It is symmetric about its mean $4(5) / 4$. Considering the upper half of the set of $T$ values first construct the following table:

$\mathrm{T}=\mathrm{t} \quad$| Ranks associated with |
| :---: |
| positive differences |$\quad$| Number $\mathrm{n}(\mathrm{t})$ of |
| :---: |
| sample points |


| $(1,2,3,4)$ | 1 |
| :---: | :---: |
| $(2,3,4)$ | 1 |
| $(1,3,4)$ | 1 |
| $(1,2.4),,(3,4)$ | 2 |
| $(1,2,3),(2,4)$ | 2 |
| $(1,4),(2,3)$ | 2 |

(Note: A similar table can be made for the lower half of the set of T values.)

Using the data above and the fact that $2^{n}=2^{4}=16$, the distribution of $T$ under $H_{0}$ is obtained to be,

$$
\operatorname{Pr}(T=t)= \begin{cases}1 / 16, & \text { if } t=0,1,2,8,9,10 \\ 2 / 16, & \text { if } t=3,4,5,6,7 \\ 0 & \text { otherwise }\end{cases}
$$

This procedure can be applied for any sample size n. For large n however, generating the probability distribution becomes a tendious process. There are prepared tables for the sampling distribution of $T$ under $H_{o}$ one of which is reproduced here (see Table I).

### 1.3 REJECTION REGIONS

For a preassigned level of significance $P(I)$ the critical region can be set up. However distribution-free statistics are discrete random variables. This is the case particularly with the WSRT statistic. Therefore it is not possible to choose just any number between 0 and 1 to designate the value of $P(I)$ since the possible $P(I)$ values are confined to the jump joints in the cumulative distribution of the test siatistic. The procedure adopted is to define the rejection region in such a way that an exact $P(I)$ is the largest number which does not exceed the preassigned level of significance (henceforth also to be denoted as the nominal $P(I)$.

Suppose $H_{1}: m>m_{0}$. As the number of random variables in the sample greater than the hypothesized median increases, the value of the statistic $T$ increases. This follows from the definition of T since the number of absolute differences corresponding to positive signs likewise increases. Hence an appropriate rejection region for this alternative given a nominal $P(I)$ is,

$$
R=\left(T ; T \geq t_{p(1)}\right),
$$

where $t_{t p(1)}$ is the critical $T$ value.

Consider $\mathrm{H}_{1}: \mathrm{m}<\mathrm{m}_{0}$. As the number of observations in the sample less than the hypothesized median increases, the value of $T$ decreases since more of the absolute differences would correspond to negative signs. The rejection region for a given nominal $\mathrm{P}(\mathrm{I})$ is thus,

$$
R=\left(T ; T \leq t_{p(1)}\right)
$$

Since the sampling distribution of T is symmetric, the rejection region for the two-sided alternative $H_{1}: m \neq m_{0}$ for a given nominal $\mathrm{P}(\mathrm{I})$ is,

$$
R=\left(T ; T \leq t_{p(13 / 2} \text { or } T \geq t_{p(1) / 2}\right)
$$

The critical $T$ values are obtained from the probability nastribution of $T$ under $\mathrm{H}_{0}$ given in Table I . The table is cumulative from each extreme to the mean but not beyond. Consider the case of $n=\dot{3}$ for which the frequency distribution of $T$ is the following:

| $\mathrm{T}=\mathrm{t}$ | $\mathrm{n}(\mathrm{t})$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 1 |
| 2 | 1 |
| 3 | 2 |
| 4 | 1 |
| 5 | 1 |
| 6 | 1 |

The relationship between the above and the tabular values (see Table I) is,

| $\mathrm{T}=\mathrm{t}$ | P |
| ---: | :--- |
| 0 | $\begin{array}{l}0.125=1 / 8 \\ 1\end{array}$ |
| $\begin{array}{l}0.250=(1+1) 1 / 8 \\ 2\end{array}$ | $\begin{array}{l}0.375=(1+1+1) / 8 \\ 3\end{array}$ |
| 4 | $0.625=(1+1+1+2) / 8$ |
| 5 | $0.375=(1+1+1) / 8$ |
| 6 | $0.250=(1+1) / 8$ |
| $0.125=(1 / 8$ |  |$\}$| $\operatorname{Pr}(\mathrm{T} \leq \mathrm{t})$ |
| :--- |
| $\operatorname{Pr}(\mathrm{T} \leq \mathrm{t})=\operatorname{Pr}(\mathrm{T} \geq \mathrm{t})$ |
| $\operatorname{Pr}(\mathrm{T} \geq \mathrm{t})$ |

The range of Table I is $3 \leq n \leq 15$. Suppose it is given that the nominal $\mathrm{P}(\mathrm{I})$ is 0.50 for a one-sided test against the alternative $\mathrm{H}_{1}: \mathrm{m}<\mathrm{m}_{0}$. Required the critical value of T. From the column of cumulative probabilities P the largest number which does not exceed 0.50 is 0.375 . This is the exact $\mathrm{P}(\mathrm{I})$.
.Hence the critical value $t_{p(1)}$ such that

$$
\operatorname{Pr}\left(T \leq t_{p(1)}\right)=0.375
$$

is 2.

The application of the WSRT is illustrated with a test at a significance level 0.10 of the null hypothesis, $\mathrm{H}_{0}: m=2$ versus the alternative, $\mathrm{H}_{1}: \mathrm{m} \neq 2$. The random sample consists of the following $n=7$ values;

$$
-3,-7,1,9,4,10,12 .
$$

From the sample, the following tabulation can be made:

| $\mathrm{X}_{1}$ | $\mathrm{D}_{1}=\mathrm{X}_{1}-2$ | $\left\|\mathrm{D}_{1}\right\|$ | $\mathrm{r}\left(\left\|\mathrm{D}_{1}\right\|\right)$ |
| :---: | :---: | :---: | :---: |
| -3 | -5 | 5 | 3 |
| -7 | -9 | 9 | 6 |
| 1 | -1 | 1 | 1 |
| 9 | 7 | 7 | 4 |
| 4 | 2 | 2 | 2 |
| 10 | 8 | 8 | 5 |
| 12 | 10 | 10 | 7 |

The above tabulation shows that $\mathbf{r}\left(\left|D_{i}\right|\right)=2,4,5$, and 7 correspond to positive differences and hence,

$$
\mathrm{Z}_{(2)}=\mathrm{Z}_{(4)}=\mathrm{Z}_{(5)}=\mathrm{Z}_{(7)}=1 \text { while } \mathrm{Z}_{(1)}=\mathrm{Z}_{(3)}=\mathrm{Z}_{(6)}=0 .
$$

Therefore the observed value for $T$ is,

$$
\begin{aligned}
\mathrm{T}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{i} \mathrm{Z}_{(i},= & 1(0)+2(1)+3(0)+4(1)+ \\
& 5(1)+6(0)+7(1) \\
= & 16 .
\end{aligned}
$$

From Table I the two-sided rejection region corresponding to the given nominal $\mathrm{P}(\mathrm{I})$ is,

$$
\langle T ; T \leq 3 \text { or } T \geq 25 \text { ). }
$$

with exact $P(I)$ equal to $2(0.039)$ or 0.078 . Since the observe $T$ value lies outside of the rejection region, the conclusion would be to reject $\mathrm{H}_{0}$.

In this study, the robustness of the WSRT against a certain departure from the assumption of independent observations is investigated. In the consideration of the problem, a Monte Carlo simulation was performed.



[^1]TABLE I: Wilcoxon Signed-Rank Distributions
(Lower Tail)

|  |  |  |  |  |  | mpl | ize ( |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 |  | 11 |  | 12 |  | 13 |  | 14 |  | 15 |  |  |  |
| T | P | T | P | T | P | T | P | T | P | T | P | T | P |
| 0 | . 001 | 0 | . 000 | 0 | . 000 | 0 | . 000 | 0 | . 000 | 0 | . 000 | 31 | . 053 |
| 1 | . 002 | 1 | . 001 | 1 | . 000 | 1 | . 000 | 1 | . 000 | 1 | . 000 | 32 | . 060 |
| 2 | . 003 | 2 | . 001 | 2 | . 001 | 2 | . 000 | 2 | . 000 | 2 | . 000 | 33 | . 068 |
| 3 | . 005 | 3 | . 002 | 3 | . 001 | 3 | . 001 | 3 | . 000 | 3 | . 000 | 34 | . 076 |
| 4 | . 007 | 4 | . 003 | 4 | . 002 | 4 | . 001 | 4 | . 000 | 4 | . 000 | 35 | . 084 |
| 5 | . 010 | 5 | . 005 | 5 | . 002 | 5 | . 001 | 5 | . 001 | 5 | . 000 | 36 | . 094 |
| 6 | . 014 | 6 | . 007 | 6 | . 003 | 6 | . 002 | 6 | . 001 | 6 | . 000 | 37 | . 104 |
| 7 | . 019 | 7 | . 009 | 7 | . 005 | 7 | . 002 | 7 | . 001 | 7 | . 001 | 38 | . 115 |
| 8 | . 024 | 8 | . 012 | 8 | . 006 | 8 | . 003 | 8 | . 002 | 8 | . 001 | 39 | . 126 |
| 9 | . 032 | 9 | . 016 | 9 | . 008 | 9 | . 004 | 9 | . 002 | 9 | . 001 | 40 | . 138 |
| 10 | . 042 | 10 | . 021 | 10 | . 010 | 10 | . 005 | 10 | . 003 | 10 | . 001 | 41 | . 151 |
| 11 | . 053 | 11 | . 027 | 11 | . 013 | 11 | . 007 | 11 | . 003 | 11 | . 002 | 42 | . 165 |
| 12 | . 065 | 12 | . 034 | 12 | . 017 | 12 | . 009 | 12 | . 004 | 12 | . 002 | 43 | . 180 |
| 13 | . 080 | 13 | . 042 | 13 | . 021 | 13 | . 011 | 13 | . 005 | 13 | . 003 | 44 | . 195 |
| 14 | . 097 | 14 | . 051 | 14 | . 026 | 14 | . 013 | 14 | . 007 | 14 | . 003 | 45 | . 211 |
| 15 | . 116 | 15 | . 062 | 15 | . 032 | 15 | . 016 | 15 | . 008 | 15 | . 004 | 46 | . 227 |
| 16 | . 138 | 16 | . 074 | 16 | . 039 | 16 | . 020 | 16 | . 010 | 16 | . 005 | 47 | . 244 |
| 17 | . 161 | 17 | . 087 | 17 | . 046 | 17 | . 024 | 17 | . 012 | 17 | . 006 | 48 | . 262 |
| 18 | . 188 | 18 | . 103 | 18 | . 055 | 18 | . 029 | 18 | . 015 | 18 | . 008 | 49 | . 281 |
| 19 | . 216 | 19 | . 120 | 19 | . 065 | 19 | . 034 | 19 | . 018 | 19 | . 009 | 50 | . 300 |
| 20 | . 246 | 20 | . 139 | 20 | . 076 | 20 | . 040 | 20 | . 021 | 20 | . 011 | 51 | . 319 |
| 21 | . 278 | 21 | . 160 | 21 | . 088 | 21 | . 047 | 21 | . 025 | 21 | . 013 | 52 | . 339 |
| 22 | . 312 | 22 | . 183 | 22 | . 102 | 22 | . 055 | 22 | . 029 | 22 | . 015 | 53 | . 360 |
| 23 | . 348 | 23 | . 207 | 23 | . 117 | 23 | . 064 | 23 | . 034 | 23 | . 018 | 54 | . 381 |
| 24 | . 385 | 24 | . 232 | 24 | . 133 | 24 | . 073 | 24 | . 039 | 24 | . 021 | 55 | . 402 |
| 25 | . 423 | 25 | . 260 | 25 | . 151 | 25 | . 084 | 25 | . 045 | 25 | . 024 | 56 | . 423 |
| 26 | . 461 | 26 | . 289 | 26 | . 170 | 26 | . 095 | 26 | . 052 | 26 | . 028 | 57 | . 445 |
| 27 | . 500 | 27 | . 319 | 27 | . 190 | 27 | . 108 | 27 | . 059 | 27 | . 032 | 58 | . 467 |
|  |  | 28 | . 350 | 28 | . 212 | 28 | . 122 | 28 | . 068 | 28 | . 036 | 59 | . 489 |
|  |  | 29 | . 382 | 29 | . 235 | 29 | . 137 | 29 | . 077 | 29 | . 042 | 60 | . 511 |
|  |  | 30 | . 416 | 30 | . 259 | 30 | . 153 | 30 | . 086 | 30 | . 047 |  |  |
|  |  | 31 | . 449 | 31 | . 285 | 31 | . 170 | 31 | . 097 |  |  |  |  |
|  |  | 32 | . 483 | 32 | . 311 | 32 | . 188 | 32 | . 108 |  |  |  |  |
|  |  | 33 | . 517 | 33 | . 339 | 33 | . 207 | 33 | . 121 |  |  |  |  |
|  |  |  |  | 34 | . 367 | 34 | . 227 | 34 | . 134 |  |  |  |  |
|  |  |  |  | 35 | . 396 | 35 | . 249 | 35 | . 148 |  |  |  |  |
|  |  |  |  | 36 | . 425 | 36 | . 271 | 36 | . 163 |  |  |  |  |
|  |  |  |  | 37 | . 455 | 37 | . 294 | 37 | . 179 |  |  |  |  |
|  |  |  |  | 38 | . 485 | 38 | . 318 | 38 | . 196 |  |  |  |  |
|  |  |  |  | 39 | . 515 | 39 | . 342 | 39 | . 213 |  |  |  |  |
|  |  |  |  |  |  | 40 | . 368 | 40 | . 232 |  |  |  |  |
|  |  |  |  |  |  | 41 | . 393 | 41 | . 251 |  |  |  |  |
|  |  |  |  |  |  | 42 | . 420 | 42 | . 271 |  |  |  |  |
|  |  |  |  |  |  | 43 | . 446 | 43 | . 292 |  |  |  |  |
|  |  |  |  |  |  | 44 | . 473 | 44 | . 313 |  |  |  |  |
|  |  |  |  |  |  | 45 | . 500 | 45 | . 335 |  |  |  |  |
|  |  |  |  |  |  |  |  | 46 | . 357 |  |  |  |  |
|  |  |  |  |  |  |  |  | 47 | . 380 |  |  |  |  |
|  |  |  |  |  |  |  |  | 48 | . 404 |  |  |  |  |
|  |  |  |  |  |  |  |  | 49 | . 428 |  |  |  |  |
|  |  |  |  |  |  |  |  | 50 | . 452 |  |  |  |  |
|  |  |  |  |  |  |  |  | 51 | . 476 |  |  |  |  |
|  |  |  |  |  |  |  |  | 52 | . 500 |  |  |  |  |

TABLEE I: Ẃíicoxon Signed-Rank Distributions
(Upper Tail)

|  |  |  |  |  |  | mpl | ize ( |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 |  | 11 |  | 12 |  | 13 |  | 14 |  | 15 |  | 16 |  |
| T | P | T | P | T | P | T | P | T | P | T | P | T | P |
| 28 | . 500 | 33 | . 517 | 39 | . 515 | 46 | . 500 | 53 | . 500 | 60 | . 511 | 91 | . 042 |
| 29 | . 461 | 34 | . 483 | 40 | . 485 | 47 | . 473 | 54 | . 476 | 61 | . 489 | 92 | . 036 |
| 30 | . 423 | 35 | . 449 | 41 | . 455 | 48 | . 446 | 55 | . 452 | 62 | . 467 | 93 | . 032 |
| 31 | . 385 | 36 | . 416 | 42 | . 425 | 49 | . 420 | 56 | . 428 | 63 | . 445 | 94 | . 028 |
| 32 | . 348 | 37 | . 382 | 43 | . 396 | 50 | . 393 | 57 | . 404 | 64 | . 423 | 95 | . 024 |
| 33 | . 312 | 38 | . 350 | 44 | . 367 | 51 | . 368 | 58 | . 380 | 65 | . 402 | 96 | . 021 |
| 34 | . 278 | 39 | . 319 | 45 | . 339 | 52 | . 342 | 59 | . 357 | 66 | . 381 | 97 | . 018 |
| 35 | . 246 | 40 | . 289 | 46 | . 311 | 53 | . 318 | 60 | . 335 | 67 | . 360 | 98 | . 015 |
| 36 | . 216 | 41 | . 260 | 47 | . 285 | 54 | . 294 | 61 | . 313 | 68 | . 339 | 99 | . 013 |
| 37 | . 188 | 42 | . 232 | 48 | . 259 | 55 | . 271 | 62 | . 292 | 69 | . 319 | 100 | . 011 |
| 38 | . 161 | 43 | . 207 | 49 | . 235 | 56 | . 249 | 63 | . 271 | 70 | . 300 | 101 | . 009 |
| 39 | . 138 | 44 | . 183 | 50 | . 212 | 57 | . 227 | 64 | . 251 | 71 | . 281 | 102 | . 008 |
| 40 | . 116 | 45 | . 160 | 51 | . 190 | 58 | . 207 | 65 | . 232 | 72 | . 262 | 103 | . 006 |
| 41 | . 097 | 46 | . 139 | 52 | . 170 | 59 | . 188 | 66 | . 213 | 73 | . 244 | 104 | . 005 |
| 42 | . 080 | 47 | . 120 | 53 | . 151 | 60 | . 170 | 67 | . 196 | 74 | . 227 | 105 | . 004 |
| 43 | . 065 | 48 | . 103 | 54 | . 133 | 61 | . 153 | 68 | . 179 | 75 | . 211 | 106 | . 003 |
| 44 | . 053 | 49 | . 087 | 55 | . 117 | 62 | . 137 | 69 | . 163 | 76 | . 195 | 107 | . 003 |
| 45 | . 042 | 50 | . 074 | 56 | . 102 | 63 | . 122 | 70 | . 148 | 77 | . 180 | 108 | . 002 |
| 46 | . 032 | 51 | . 062 | 57 | . 088 | 64 | . 108 | 71 | . 134 | 78 | . 165 | 109 | . 002 |
| 47 | . 024 | 52 | . 051 | 58 | . 076 | 65 | . 095 | 72 | . 121 | 79 | . 151 | 110 | . 001 |
| 48 | . 019 | 53 | . 042 | 59 | . 065 | 66 | . 084 | 73 | . 108 | 80 | . 138 | 111 | . 001 |
| 49 | . 014 | 54 | . 034 | 60 | . 055 | 67 | . 073 | 74 | . 097 | 81 | . 126 | 112 | . 001 |
| 50 | . 010 | 55 | . 027 | 61 | . 046 | 68 | . 064 | 75 | . 086 | 82 | . 115 | 113 | . 001 |
| 51 | . 007 | 56 | . 021 | 62 | . 039 | 69 | . 055 | 76 | . 077 | 83 | . 104 | 114 | . 000 |
| 52 | . 005 | 57 | . 016 | 63 | . 032 | 70 | . 047 | 77 | . 068 | 84 | . 094 | 115 | . 000 |
| 53 | . 003 | 58 | . 012 | 64 | . 026 | 71 | . 040 | 78 | . 059 | 85 | . 084 | 116 | . 000 |
| 54 | . 002 | 59 | . 009 | 65 | . 021 | 72 | . 034 | 79 | . 052 | 86 | . 076 | 117 | . 000 |
| 55 | . 001 | 60 | . 007 | 66 | . 017 | 73 | . 029 | 80 | . 045 | 87 | . 068 | 118 | . 000 |
|  |  | 61 | . 005 | 67 |  | 74 |  | 81 | . 039 | 88 | . 060 | 119 | . 000 |
|  |  | 62 | . 003 | 68 | . 010 | 75 | . 020 | 82 | . 034 | 89 | . 053 | 120 | . 000 |
|  |  | 63 | . 002 | 69 | . 008 | 76 | . 016 | 83 | . 029 | 90 | . 047 |  |  |
|  |  | 64 | . 001 | 70 | . 006 | 77 | . 013 | 84 | . 025 |  |  |  |  |
|  |  | 65 | . 001 | 71 | . 005 | 78 | . 011 | 85 | . 021 |  |  |  |  |
|  |  | 66 | . 000 | 72 | . 003 | 79 | . 009 | 86 | . 018 |  |  |  |  |
|  |  |  |  |  |  | 80 | . 007 | 87 | . 015 |  |  |  |  |
|  |  |  |  | 74 | . 002 | 81 | . 005 | 88 | . 012 |  |  |  |  |
|  |  |  |  | 75 | . 001 | 82 | . 004 | 89 | . 010 |  |  |  |  |
|  |  |  |  | 76 | . 001 | 83 | . 003 | 90 | . 008 |  |  |  |  |
|  |  |  |  | 77 | . 000 | 84 | . 002 | 91 | . 007 |  |  |  |  |
|  |  |  |  | 78 | . 000 | 85 | . 002 | 92 | . 005 |  |  |  |  |
|  |  |  |  |  |  | 86 | . 001 | 93 | . 004 |  |  |  |  |
|  |  |  |  |  |  | 87 | . 001 | 94 | . 003 |  |  |  |  |
|  |  |  |  |  |  | 88 | . 001 | 95 | . 003 |  |  |  |  |
|  |  |  |  |  |  | 89 | . 000 | 96 | . 002 |  |  |  |  |
|  |  |  |  |  |  | 90 | $.000$ | 97 | . 002 |  |  |  |  |
|  |  |  |  |  |  | 91 | $.000$ | 98 | . 001 |  |  |  |  |
|  |  |  |  |  |  |  |  | 99 | . 001 |  |  |  |  |
|  |  |  |  |  |  |  |  | 100 | . 001 |  |  |  |  |
|  |  |  |  |  |  |  |  | 101 | . 000 |  |  |  |  |
|  |  |  |  |  |  |  |  | 102 | . 000 |  |  |  |  |
|  |  |  |  |  |  |  |  | 103 | . 000 |  |  |  |  |
|  |  |  |  |  |  |  |  | 104 | . 000 |  |  |  |  |
|  |  |  |  |  |  |  |  | 105 | . 000 |  |  |  |  |

## 2. ROBUSTNESS

### 2.1 ROBUST TESTS

It is often that when statistical tests are applied, little is known of the validity of the assumptions. Before applying a given test it is imperative to recognize first any departure from assumptions that may be brought about by the actual situation. If such departure(s) exist, the next step step is to investigate whether the test is sensitive to it. This enables one to decide whether to proceed in using the test, modifying it, or substituting with another test whose performance is not considerably affected by the said departure.

The property which makes a test insensitive to changes in the underlying assumptions is called the robustness of the test. To identify a test as robust against a given departure from assumptions one must investigate the effect of the change: on the performance of the test on the basis of at least one of the following:

1. the level of significance for a fixed rejection region;
2. the rejection region given for a fixed level of significance;
3. the power of the test;
4. the asymptotic relative efficiency with respect to other tests.

In dealing with the problem, this paper has adopted the first approach; namely, the investigation of the effect of the departure on the level of significance for fixed rejection regions.

### 2.2 MODEL

The departure from the assumption of independence being considered may be brought about by a situation wherein only a few (c) observations can be drawn per day, and where experiments have to be conducted for several ( n ) days to yield the needed number (nc) of observations. Observations on the same day might depend on a particular effect, the result of possible daily changes in the experimental conditions. The sample size is denoted by nc and the observations are grouped in n blocks with c observations per block. The possible change of conditions is introduced as a random block effect.

Let the random variables after blocking be denoted as $\mathrm{X}_{\mathrm{ij}}(\mathrm{i}=1,2, \ldots, \mathrm{n} ; \mathrm{j}=1,2, \ldots, \mathrm{c}$ ). Consider the model,

$$
\begin{equation*}
\mathbf{X}_{\mathrm{ij}}=\mathrm{Ui}+\mathrm{V}_{\mathrm{ij}} \tag{15}
\end{equation*}
$$

where $U_{1}, U_{2}, \ldots, U_{n}, V_{11}, V_{12}, \ldots, V_{n c}$ are assumed independent with distributions,

$$
\begin{array}{lc}
\operatorname{Pr}\left(\mathrm{U}_{1} \leq \mathrm{u}\right)=\mathrm{G}(\mathrm{u}) & \text { (G and } \mathrm{K} \text { are continuous and } \\
\operatorname{Pr}\left(\mathrm{V}_{\mathrm{i} j} \leq \mathrm{v}\right)=\mathrm{K}(\mathrm{v}) & \text { symmetric }),
\end{array}
$$

and having parameters,

$$
\begin{array}{ll}
\mathrm{E}\left(\mathrm{U}_{\mathrm{i}}\right)=\mathrm{m}, & \underset{\operatorname{Var}\left(\mathrm{~V}_{\mathrm{ij}}\right)=0,}{\operatorname{Var}\left(\mathrm{~V}_{\mathrm{i}}\right)}=\mathrm{J}^{2},
\end{array}
$$

The random variables $X_{i j}$ will therefore have the following parameters;

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{X}_{\mathrm{ij}}\right)=\mathrm{E}\left(\mathrm{U}_{\mathrm{i}}+\mathrm{V}_{\mathrm{ij}}\right)=\mathrm{E}\left(\mathrm{U}_{\mathrm{i}}\right)+\mathrm{E}\left(\mathrm{~V}_{\mathrm{ij}}\right)=\mathrm{m}+0=\mathrm{m} ; \\
& \operatorname{Var}\left(\mathrm{X}_{\mathrm{ij}}\right)=\operatorname{Var}\left(\mathrm{U}_{\mathrm{i}}+\mathrm{V}_{\mathrm{ij}}\right)=\operatorname{Var}\left(\mathrm{U}_{\mathrm{i}}\right)+ \\
& \operatorname{Var}\left(\mathrm{V}_{\mathrm{ij}}\right)=\mathrm{J}^{2}+\boldsymbol{\sigma}^{2} ; \\
& \operatorname{Cov}\left(X_{i j} X_{i, j}\right)=E\left(X_{i j} X_{i, j}\right)-E\left(X_{i, j}\right) E\left(X_{i, j}\right) \\
& =E\left(\left(U_{i}+V_{i j}\right)\left(U_{i},+V_{i, j}\right)\right)-m^{2} \\
& =E\left(U_{i} U_{i},+V_{i j} U_{i},+V_{i, j}{ }^{\prime} U_{i}+V_{i j} V_{i, j}\right)-m^{2} \\
& =E\left(U_{i} U_{i}\right)+E\left(V_{i j}\right) E\left(U_{i}\right)+E\left(V_{i j}\right) E\left(U_{i}\right) \\
& +E\left(V_{1 j}\right) E\left(V_{i, j}\right)-m^{2} \\
& =\mathrm{E}\left(\mathrm{U}_{1} \mathrm{U}_{\mathrm{i}},\right)-\mathrm{m}^{2} \tag{16}
\end{align*}
$$

If i $\neq \mathrm{i}$ ',

$$
\dot{E}\left(U_{i} U_{i},\right)=E\left(U_{i}\right) E\left(U_{i},\right)=m^{2}
$$

and therefore equation (16) becomes,

$$
\begin{equation*}
\operatorname{Cov}\left(X_{i j} X_{i, j}\right)=m^{2}-m^{2}=0 \tag{17}
\end{equation*}
$$

If $\mathrm{i}=\mathrm{i}$,

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{U}_{\mathrm{i}} \mathrm{U}_{\mathrm{i}}\right) & =\mathrm{E}\left(\mathrm{U}_{\mathrm{i}}\right)=\operatorname{Var}\left(\mathrm{U}_{\mathrm{i}}\right)+\mathrm{E}^{2}\left(\mathrm{U}_{\mathrm{i}}\right) \\
& =\mathrm{J}^{2}+\mathrm{m}^{2}
\end{aligned}
$$

and hence (16) becomes,

$$
\begin{equation*}
\operatorname{Cov}\left(\mathrm{X}_{\mathrm{ij}} \mathrm{X}_{\mathrm{i}, \mathrm{j}}\right)=\mathrm{J}^{2}+\mathrm{m}^{2}-\mathrm{m}^{2}=\mathrm{J}^{2} . \tag{18}
\end{equation*}
$$

The nature of the dependence can be seen from (17) and (18) ; two random variables in the same block are dependent while two random variables belonging to different blocks are independent.

### 2.3 EFFECT ON THE TYPE I PROBABILITY

Let the exact type I probability of the WSRT under the model be denoted as exact $P^{\prime}(I)$. This will be compared with the exact $\mathrm{P}(\mathrm{I})$ if the underlying assumptions of section 1.1 are valid. The rejection regions considered are:

1. $\langle\mathrm{T} ; \mathrm{T}=0,1$ )
2. $\langle T ; T=0,1,2,3,4,5$,
3. $(T ; T=0,1,2,3,4,5,6,7,8)$
(for exact $P(I)=0.008)$;
(for exact $\mathrm{P}(\mathrm{I})=0.039$ );
(for exact $\mathrm{P}(\mathrm{I})=0.098$ ).

Given the null hypothesis $H_{0}: m=m_{0}$, let

$$
\left|X_{i j}-m_{o}\right|_{(k)} \quad\left(\begin{array}{l}
i \\
j
\end{array}=1,2, \ldots, n ;\right.
$$

be the kth order statistic among $\left|\mathrm{X}_{11}-\mathrm{m}_{\mathrm{o}}\right|,\left|\mathrm{X}_{12}-\mathrm{m}_{\mathrm{o}}\right|, \ldots,\left|\mathrm{X}_{\mathrm{nc}}-\mathrm{m}\right|$. To obtain the values of the exact $\mathrm{P}^{\prime}(\mathrm{I})$ the probabilities under $\mathrm{H}_{\mathrm{o}}$,

$$
\mathrm{p}_{\mathrm{k}}^{\prime}=\operatorname{Pr}\left(\left|\mathrm{X}_{\mathrm{ij}}-\mathrm{m}_{0}\right|_{\mathrm{k})} \text { is such that } \mathrm{X}_{1 \mathrm{j}}-\mathrm{m}_{0}>0\right)
$$

are needed. These probabilities were empirically generated by means of a Monte Carlc simulation performed with the aid of a computer ${ }^{1}$. The following steps were involved:

1. 150 samples of size 10 were drawn from a $N(0,1)$ population ( $\mathrm{N}(\mathrm{a}, \mathrm{b}$ ) denotes a normal distribution with mean $a$ and variance $b$ ). Let the random variables be denoted by

$$
\mathbf{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}, \mathrm{Y}_{4}, \mathrm{Y}_{5}, \mathrm{Y}_{6}, \mathrm{Y}_{7}, \mathrm{Y}_{8}, \mathrm{Y}_{9}, \mathrm{Y}_{10} .
$$

2. In each sample let,

$$
\begin{aligned}
& \mathrm{U}_{1}=(2)^{1 / 2} \mathrm{Y}_{1}+1, \\
& \mathrm{U}_{2}=(2)^{1 / 2} \mathrm{Y}_{2}+1 .
\end{aligned}
$$

The random variables $\mathrm{U}_{1}$ and $\mathrm{U}_{2}$ are normally distributed with mean 1 and variance 2. Let,

$$
\begin{array}{ll}
\mathrm{Y}_{3}=\mathrm{V}_{11}, & \mathrm{Y}_{7}=\mathrm{V}_{21}, \\
\mathrm{Y}_{4}=\mathrm{V}_{12}, & \mathrm{Y}_{8}=\mathrm{V}_{22}, \\
\mathbf{Y}_{5}=\mathrm{V}_{13}, & \mathrm{Y}_{9}=\mathrm{V}_{23}, \\
\mathrm{Y}_{6}=\mathrm{V}_{14}, & \mathrm{Y}_{24} .
\end{array}
$$

8. In each sample define a new set of random variables in the following manner:

$$
\begin{align*}
& X_{11}=\left(2^{1 / 2} Y_{1}+1\right)+Y_{3}=U_{1}+V_{11} \\
& X_{12}=\left(2^{1 / 2} Y_{1}+1\right)+Y_{4}=U_{1}+V_{12} \\
& X_{13}=\left(2^{1 / 2} Y_{1}+1\right)+Y_{5}=U_{1}+V_{13} \\
& X_{14}=\left(2^{1 / 2} Y_{1}+1\right)+Y_{6}=U_{1}+V_{14} \\
& X_{21}=\left(2^{1 / 2} Y_{2}+1\right)+Y_{7}=U_{2}+V_{21} \\
& X_{22}=\left(2^{1 / 2} Y_{2}+1\right)+Y_{8}=U_{2}+V_{22} \\
& X_{23}=\left(2^{1 / 2} Y_{2}+1\right)+Y_{9}=U_{2}+V_{23} \\
& X_{24}=\left(2^{1 / 2} Y_{2}+1\right)+Y_{10}=U_{2}+V_{24} \tag{19}
\end{align*}
$$

The random variables in (19) form a sample of size nc $=8$, $\mathbf{n}=2, \mathrm{c}=4$, satisfying equation (15) with $\mathrm{i}=1,2$, $\mathrm{j}=1,2,3,4$, and where,

$$
\mathrm{U}_{1} \text { is } \mathrm{N}(1,2) \text { distributed, }
$$ $\mathrm{V}_{1 \mathrm{j}}$ is $\mathrm{N}(0,1)$ distributed,

1. A terminal at De La Salle College was used.
and the moments are,

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{X}_{\mathrm{ij}}\right)=1, \\
& \operatorname{Var}\left(\mathrm{X}_{\mathrm{ij}}\right)=3 \text {, } \\
& \operatorname{Cov}\left(\mathrm{X}_{\mathrm{ij}} \mathrm{X}_{\mathrm{i}, \mathrm{j}}\right)=\begin{array}{l}
(2, \\
\mathrm{i}=\mathrm{i}^{\prime} ; \\
\left(\begin{array}{ll}
0 & \mathrm{i} \neq \mathrm{i}^{\prime} .
\end{array}\right.
\end{array}
\end{aligned}
$$

4. In this simulation the null hypothesis is $\mathrm{H}_{0}: \mathrm{m}=1$. With $\mathrm{m}_{0}=1$ the following values were obtained per sample:
(a) $X_{i j}-m_{o}=D_{i j}$
(b) $\left|\mathrm{X}_{\mathrm{ij}}-\mathrm{m}_{0}\right|=\left|\mathrm{D}_{1 \mathrm{j}}\right|$
(c) $\quad \mathrm{r}\left(\left|\mathrm{X}_{1 \mathrm{j}}-\mathrm{m}_{\mathrm{o}}\right|\right)=\mathrm{r}\left(\left|\mathrm{D}_{1 \mathrm{j}}\right|\right)$
5. The frequencies,

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{s}}=\text { the number of observations with } \mathrm{r}\left(\left|\mathrm{D}_{1 j}\right|\right)=\mathrm{s} \\
& \text { such that } \mathrm{D}_{\mathrm{ij}}>0(\mathrm{~s}=1,2, \ldots, 8)
\end{aligned}
$$

were recorded for B samples of size 8. This was done for $B=60,80,100,125$, and 150 .
6. Then the empirical probabilities,

$$
\mathrm{p}_{\mathrm{s}}^{\prime}=\mathrm{f}_{\mathrm{s}} / \mathrm{B} \quad \mathrm{~s}=1,2, \ldots, 8
$$

were computed. The values are in Table II. The behavior of these values as the number of samples increases is shown in Figure I.

Table II
$f_{s}$ and $p_{s}$ salues under $H_{0}$ for $B=60,80,100,125$, and 150

| $\mathbf{r}\left(\left\|D_{1 j}\right\|\right)=s$ | $B=60$ |  | $\mathrm{B}=80$ |  | $B=100$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{f}_{\mathrm{s}}$ | $\mathrm{p}^{\text {B }}$ | $\mathrm{f}_{\mathrm{s}}$ | p's | $\mathrm{f}_{\mathrm{B}}$ | p's |
| 1 | 34 | 0.5667 | 43 | 0.5375 | 53 | 0.53 |
| 2 | 32 | 0.5333 | 43 | 0.5375 | 59 | 0.59 |
| 3 | 33 | 0.5500 | 45 | 0.5625 | 57 | 0.57 |
| 4 | 30 | 0.5000 | 39 | 0.4875 | 48 | 0.48 |
| 5 | 28 | 0.4667 | 38 | 0.4750 | 46 | 0.46 |
| 6 | 31 | 0.5167 | 41 | 0.5125 | 48 | 0.48 |
| 7 | 35 | 0.5833 | 45 | 0.5625 | 56 | 0.56 |
| 8 | 25 | 0.4167 | 34 | 0.4250 | 43 | 0.43 |


| $\mathrm{r}\left(\left\|\mathrm{D}_{i j}\right\|\right)=\mathrm{s}$ | $\mathrm{B}=125$ |  | $\mathrm{B}=150$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 64 | 0.512 | 78 | 0.52 |
| 2 | 74 | 0.592 | 86 | 0.5733 |
| 3 | 67 | 0.536 | 77 | 0.5133 |
| 4 | 65 | 0.52 | 77 | 0.5133 |
| 5 | 58 | 0.464 | 69 | 0.46 |
| 6 | 63 | 0.504 | 71 | 0.4733 |
| 7 | 75 | 0.60 | 89 | 0.5933 |
| 8 | 60 | 0.48 | 73 | 0.4867 |



Figure 1. $f^{\prime} s$ and $\rho_{s}^{\prime}$ Values Under $H_{0}$ for $B=60,80,100,125$, and 150
7. Using the empirical p 's for $\mathrm{B}=150$ the exact $\mathrm{P}^{\prime}(\mathrm{I})$ values were computed considering the rejection regions mentioned. It can be verified from Table I that these rejection regions if no departure exists have their corresponding nominal $P$ (I) values; in particular,
( $\mathrm{T} ; \mathrm{T}=0,1$ ) correspond to nominal $\mathrm{P}(\mathrm{I})=0.01$;
( $\mathrm{T} ; \mathrm{T}=0,1,2,3,4,5$, ) correspond to nominal $\mathrm{P}(\mathrm{I})=0.05$;
( $\mathrm{T} ; \mathrm{T}=0,1,2,3,4,5,6,7,8$ ) correspond to nominal $\mathrm{P}(\mathrm{I})=0.10$.
To illustrate the computations involved, consider the case where the rejection region is $\langle T ; T=0,1\rangle$. Hence,

$$
\text { exact } \mathbb{P}^{\prime}(\mathrm{I})=\operatorname{Pr}(T=0)_{H_{0}}+\operatorname{Pr}(T=1)_{H_{0}}
$$

$$
\begin{aligned}
= & \prod_{\mathrm{s}=1}^{8}\left(1-\mathrm{p}_{\mathrm{s}}^{\prime}\right)+\mathrm{p}_{1}^{\prime} \prod_{\mathrm{s}=2}^{8}\left(1-\mathrm{p}_{\mathrm{s}}\right) \\
= & (1-0.52)(1-0.5733)(1-0.5133)(1-0.5133)(1-0.46) \\
& (1-0.4733)(1-0.5933)(1-0.4867)+(0.52)(1-0.5733) \\
& (1-0.5133)(1-0.5133)(1-0.46)(1-0.4733)(1-0.5933) \\
& (1-0.4867) \\
= & 0.0060 .
\end{aligned}
$$

The results of similar computations are given in Table III. So that the effect of the model may be seen, the exact $P$ (I) valucs (i.e. with no departure considered) are also entered in this table together with the values of

$$
d=\operatorname{exact} P^{\prime}(I)-\operatorname{exact} P(I)
$$

## Table III

| Nominal | Rejection Region | $\begin{aligned} & \text { Exact } \\ & \mathrm{P}(\mathrm{I}) \end{aligned}$ | Exact <br> $\mathrm{P}^{\prime}(\mathrm{I})$ | d |
| :---: | :---: | :---: | :---: | :---: |
| 0.01 | 0,1 | 0.0080 | 0.0060 | -0.0020 |
| 0.05 | 0,1,2,3,4,5 | 0.0390 | 0.0332 | -0.0580 |
| 0.10 | 0,1,2,3,4,5.6,7,8 | 0.0980 | 0.0853 | -0.01270 |

It is seen from Table III that exact P' (I) differs from exact P (I) by approximately $10 \%$ of nominal P (I). This attests to the robustness of the WSRT under the model considered.

Actually, exact P'(I)'s are smaller than exact P(I)'s. This means that the existence of the departure has decreased the probability of rejecting a true hypothesis, and from this point of view, the performance of the WSRT has even improved.

## REFERENCES

[1] BOX, G.E.P. and ANDERSON, S.L., "Pcrmatation Theory in the derivation of robust criteria and the study of departure from assumptions", Journal of the Royal Statistical Society, Series B, Volume 11, Number 1 (1955), pp. 1-26.
[2] FRASER, D.A.S., Nonparametric Methods in Statistics, John Wiley and Sons Inc., New York, 1957.
[3] GIBSONS, J.D., Nonparametric Statistical Inference, McGraw-Hill Book Co., 1971.
[4] HODGES, E.L. and LEHMANN, J.L., "The Efficiency of Somz Nonparametric Competitors of the $t$-test", The Annals of Mathematical Statistics, Volume 27, (1956) pp. 324-335.
[5] HOYLAND, A., "Robustness of the Wilcoxon Estimate of Location Against a Certain Dependence", The Annals of Mathematical Statistics, Volume 39, Number 4 (1968), pp. 1196-1201.
[6] KRAFT, C. and VAN EEDEN, C., A Nonparametric Introduction to Statistics, The Macmillan Co., New York, (1968).


[^0]:    * This is taken from the author's M. Sc. unpublished thesis "The Power and Robustness of the One-Sample Wilcoxon SignedRank Test", submitted to U.P. Statistical Center, 1972.
    ** Senior Instructor in Mathematics, De La Salle College.

[^1]:    ${ }^{1}$ Reproduced from the book "A Nonparametric Introduction to Statistics" by Kraft and Van Eeden [14].

